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FOREWORD

This report explains the digital computer program used to determine the natural fre-
quencies. mode shapes. forces. and moments for propellant sloshing in tanks of
arbitrary shape. The description of this analysis has been prepared under the re-
quirement of Part 1. Section A. 1. of Contract NASs-11193 and satisfies in part the
provisions of this requirement. The remaining documentation requirements of the
subject contract are fulfilled in the three companion reports GD A-DDE61-059.
GDIA-DDE6:4-060. and GDIA-DDEG4-061.
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SECTION |

INTRODUCTION

The hydrodynamic forces and moments are derived (in Reference 1) for tanks pos-
sessing a longitudinal axis of symmetry. These forces and moments are given in
terms of coefficients which depend only on the tank geometry.,

This report explaing the steps used to obtain these coefficients, given the tank geom-
etry, and the procedures used in the program check-out. A description of the routines
used in the program is included as well as instructions for use of the program. The
output of the digital program gives the spring-mass parameters associated with the
svstem. )

The digital routines were developed and programed by Roger Barnes.,
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SECTION 2
SYNTHESIS OF EQUATIONS
2.1 HYDRODYNAMIC EQUATIONS., The equations which describe the sloshing of

liquid propellant in a tank consisting of an arbitrary curve rotated about an axis of
svmmetry are derived in Reference 1 and are:

AR t) sin 9 ¢ . 2.1
b2 § () sin S r.z) (2. 1)
n -l
F. o -Ma (2.2)
3 3
F - -Ma -ML 5 -M3 by ¢ 2.3
2 o Il ’ Zl )n/ngn ( )
n -

TML o L5 -MY vy ~l‘t “h )
r LT \Inz‘l, y € Ly =h)

n| 3 nn
{
-1. b (2.4)
I n gn
where
7, 1% the surface wave height
F " and ¥ , " are forces in the x.; and x  directions (see Figure 2-1)
o .
) pl . P
TI " is the moment about the .\'1 axis
& (r.z) are eigvenfunctions
n
and
gn(u is given by the solution of (2.5).
K
- n . . . " -
Fy - —E¢E () -Kb vt ~-K {LLb -L{® -h)l @) (2.5)
n S D nn n bon n n
*)
[
The K are nondimensiong! freguencies, Lis the distance from the coenter of
n s ’
o)

gravity of the Hquid to the ndistoarhed troe surface . and L.I is the distance from the

2=



GDIA-DDE64-062

center of gravity of the liquid to an arbitrary point along an extension of the line AC

(sec Figure 2-1).
Z
(x3)

L
0] . r
(X9)
A
d e v = ¥ (2)
1

Figure 2-1. Tank of Arbitrary Shape

The component of acceleration along the X, (X)) axis is denoted by rJz‘1 ). The con-

stants in (2.3), (2.4). and (2.5) are given by

B
: AT r ‘4- (r,m‘zdr (2.6)
n V n
¢
B
m 2
) : - L)y dr 2.7
- ™ /x CLI (r.L) dr 2.7)
n
C
. B
! S rd (r.oz) dz 2.8
TR / crd (r.z) dz (2.8)
non
A
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and

2 ) 9 2
Do e T LA - .9 - ¢
IH pf (hz .\:,{ ) dv 1p/ x;; d\ _pL/ XBUZLI(,IS
’ S

Uv UV U

S

- I,I“M (2.9

M is the total mass and V the total volume of the liquid.

= nm
csinBla v - ; ) cos z = . o 2.10
L'l sin [\OI né‘l \nll (unl ) cos #n (z +~ ) /Jn N ( )

where A is to be determined from the equation
n

1 dr
A r 1 F(z)) cos AR " — “(z)) si 2+
o T AL “ (W Fle)) cos gz - d) =1 (W F(z)) sinp (2 +d)
n=1
2z
—5 . ~d -z L (2.11)
{2

To find an approximation for R truncate the series to include N - 1 terms. Evaluate
(2.11) at N + 1 points (zi) on the houndary to obtain the following set of linear equations
for the determination of the Ay, foe.

N
2 i A i ‘ (7 AL z - d
“\0 Z nun 1 (#nH/i)) cos un (/i )
n-l
27
) @ Py sinu Lo N+l o212
Rl VA VA S Va “ i + < <
dz i’ (un ( i n( i 12 ’ ’ )

where r = F(z) is the equation of the boundary AB.

2.2 SYNTHESIS FOR DIGITAL SOLUTION,  The boundary value problem for the

determination of the eigenfunctions. ¢ . and ecigenvalues. K | is
n n

- 1_ — - S It (2.1

g™
i
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3¢
v {on AB) (2.
¢ K
n n ;
— 4 on BC 2.
37 I. n (o ) (

It has been shown (Reference 2) that the Kn,‘ [. may be found by minimizing the
quotient

o ' )
K [{/[(:i?) é“) (j(/b) }rdrdz

—_— d (‘f)

L flCD (r. L)] . rdr N

UI'S

14)

16)

To reduce the magnitude of the variables in integration, make the problem described

by (2.13) through (2. 16) nondimensional by letting

R r a

& (Ra. 7Za) (R.7)
and
a  the distance from B to the z-axis,

If the free surface of the liquid does not intersect the center line of the tank. A and

C coincide. In this situation. let the distance from the z-axis to point C be designated

by R ;- and define € Hi a.

Thus
2 2
s | B S .
— s (2.17)
R™ R T
— 0 (on AB) (2. 1%)
. K: ‘
’7 “I—i N (on BCY (2.19)
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9 9 ]

= i~ e

[
[ s ] nan

C

] RdRdZ

where the integrations are over nondimensional limits (se¢ Figure 2-2).

Z
[
1
A } B
€~ L/a
— R
d/a
€ ARl/d

Figure 2-2. Nondimensional Geometry

Following the pattern of Reference 2. let * be expressed us a linear combination of
the eigenfunctions for a shallow tank and eigenfunctions for a deep cylindrical tank.
and use a Rayleigh-Ritz technique. Let

K:

A (2.21)
I.

and substitute

N X

MR YR R.7 2,22
2o, R (2.22)
nol
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into (2.20); differentiate with respect to ¢, . and set the result equal to zero to obtain

*
5 [a - ] ¢ c0.m 1.2, ..., N* (2.23)
mn mn} mn
n-l
where
* * * * * %*
[ 2 b 2 R
m n m n m
) : + RdRdZ 2.24
mn f{ R ‘R R‘.Z V4 7 e ( )
UA
B3
* *
! : N 1. L.a) . (R. 1.a) RdR 2.25
"mn ,[ m ( ) n( Y ( )
¢
*
The set of functions - (R, Z) are chosen, for reasons mentioned previously., as
n
’n-1
R hoe 1.2 M eNY
= * (R, Z) (2.26)
. j (Z-1.72)
n
J .G Re .n=M=*1. ... N~
1 n
where
,I1 (h = v (2.27)
and the first root of (2.27) is called jM 1
The b are caleulated as
mn
! n+2m
2m-1  2n-1 b€ .
b R R RdR = - . m. n- M (2.2%3)
mn 2n +~2m
€
!
/ RJI. (G RYJ, G R AR, m. n =M
1 'n I "'m
¢
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Jped 0o d do-i e, G ad 00

I -t :
)mn 53 .m. n>M (2.29)
Tm ha m #n
) l J ) . / . 2 - ‘Z 2 .
(Jrl -1 1 (X)—Jn€Jl (Jnf) -(_ € -l)J1 G o |
b = .n>M (2.30)
nn 2
2j
n
: 2
b :f R°™J (G R AR. m= M<n
mn 1 "n
€
L em - g mel o om - 1yd G i ed
3 (2m ) 1(Jn)~ € (2m ) l(Jnf) Ia€dy (JnF)
Jn
-4 -1 2.31
m (m ) >(m_1)n1 ( )
where
l ,, l s J . . J . . s 2 2 e 2 3.)
)ln _—3_ |:Jn lon) _Jn€ l(Jn€) TJn ¢ Jl Un€) (2.32)
j
n

Substitute the value of # * from (2. 26) into (2. 24) to obtain the following expressions
for A Thus. by Green's theorem

2n+2m-4
a -f[|(zm-1) (2n - 1) '*1IR e ]RdeZ. n.m o M
mn
UA

2n+2m-3
= - [4mn -2(n +tm -~ l)l ¢ R ZdR
C

(2.33)

(sce Reference 3. p. 239)
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In a similar manner

. . j (Z-1L7a)
a = f em-HRTTT L GRe”
mn - ar°1 Ya "t
UA
j (Z-L/a) .
2m-3 iRAZ. M-
R m Jl (J,nm o n RdRc¢ m n

)

1 om-1 / om-2 o
—(ﬁ {(Bm oIy g R R R dR (2. 34)
i nt "n 1% n
n
C

] i (Z-1./a)

and

a

mn

d d -1
: R— i Ry— i Ry +R J (G R- i R
f & dRR I1 Un )dRJl (Jm ) 1 (Jn ) I1 (Jm )

UA
i (Z-1)

j (Z-1.0)
R I GRIG ]e! ¢ " dRAZ. n. m M
nm | “n 1m

1 , -1
———('1 ij 1 R) i Ry R . i RyJ (G R
2 '{\ JnJm 1 Un ) Il (Jm ) Jl (Jn ) 1 (Jm )

C o g
(Jn Jm) {(Z-1 a)
dRn. m > M (2. 35)

o
F R OJGRI(G R

I l(Jn ) 1(Jm ) -

n m

Once the b and a arc determined. the cigenvalue problem can be solved vielding
mn mn :
N and the corresponding ¢y

e th . .
The kK mode is given by

¥k, -
Y ¢ 7 2. 36
“~"n n ) )

K

nt
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Its dimensional form is
N* K
¢ (r. 2) =y c ot (r/a. z/a). (2.37)
n=1

It is this value which must be used in the evaluation of (2. 6). (2.7) and (2.8). The Kn
are given by

L .
K ==X (2. 38)
n a n
Thus
B
9
bt f rr ¢ (r. L)dr
n Vv n
n
C
* B
m N“ " SN I./a) d
T ma—— C r - ‘/2 R 5 2]
Vy L kf % (r/a a) dr
0=l C
3 N* 1 3ON*
ma n 2 . Ta ~ n
‘ 4 (R, Lya)dR - c b 9.
= e R™: (R a) o Z LI 2. 39)
n k‘l n kl
€
Similarly
2N* N*
mla n
o 3D Ckn ¢ (2. 40)
kllzl 1 i
o Non
h =="“-— Y ¢ h 2. 41
n V'}’ K L k [N ( )
nn k-l
Where
B
.2n
h * / ZR™ dZ n< M (2. 42)
A
B jn(V.,—L a)
* r-_,I{ o | } * r, N < < 27* p. -‘:
hn f Z 11 (Jn{)( dZ M <n < N (2. 43)
A

i
!
o,
ol
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Finally consider the evaluation of I“

2 2 2 2
pf x, - X, y dV = pm [ (r~ + 2z ) rdrdz
A

uv U

5 3 21-{2‘;
== p‘ﬂa) nz+— dR
)

C

5
2 < :;
; ~{pf X, dv ZQ—’?— RZ dR
uv

O

B

) v} - .
Zpl‘f XU, leb zonl‘f Zr A()r Z AnI‘(H‘r)cuspn(x ~d)ldz (2.

. n 1
'S A
e he preceda, cocthierenis fanse been cateudated
et toad reodel srmaniation aas b b taberd, b or o

doesired guantitios are listod below (see Reterence b

‘ i, b [.ih o by
3 I n B 0 n
il
m Alv b K
1 non !
) (]
N X My K I
1 3 non 1
R 5
m v o2 v h K
0 nt n
n-l
~
li Sy b K l b1y H
| nonon | i

2-10

RERR AR ]i‘(}\ii!'t'\i KR M

cLhe

2. 44)

2.45)

16)

Lo
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SECTION 3

ROUTINES OF THE COMPUTER PROGRAM

The routines of the computer program are coded in the FORTRAN 1V language . with
the exception of parts of a SHARE simultaneous equation routine (SOLVE) and a
SHARE eigenvalue routine (RWEG2F).

3.1 DRIVER ROUTINES. The boundary value problem requires solution of the

cigenvalues of (2.23). Elements of the a,,, and hmn matrices are computed for ten

eigenfunctions, of which the first five are polynomials. The integration to evaluate
the a - elements is described in Section 3.2. The Bessel functions needed for the

elements of both matrices are computed by a routine described in Section 3.3. The
resultant eigenvalues, and their eigenvectors. are found by the Jacobi method using
the routine RWEGZF,

Routine RWEG2I solves an eigenvalue problem of the form:

l\] l\] A [1;] [\} (3.1)

where the BB matrix must be positive definite.  Now it was found that the bmn matrix
did not satisfy this requirement, though the a matrix did. Therefore. letting
!_»\, lh }:md l}’,] l:l ] . (3. 1) is rewritten:

mn mi

Ihmnl l\] K lumnl [X ] (3.2)

where

;o]
A= 3.3
A )
- s . . ) . . .
The X eigenvalues are found and then inverted to give the desirved eigenvalues of
(2.23). Each corresponding eigenvector is normalized by its largest clement.

For cach mode of oscillation entered as input data. the nondimensional frequency (Kn)
is computed by (2.3%). Force and moment coefficients On‘ hn‘ and h ) are computed
using (2,39 through (2.43), where the hn‘* fuctor of hn cmployvs a Bessel function,
Seetion 3.3, and integration. Section 3.2, The above cocfficients ure then combined
as in (2.47) through (2.52) to yvield the spring-mass parameters (m .« . K %@,

m . Pl”. and 10). The center of rotation is assumed to be at the bottom of the tank.

;o din the expressions for 4. :30. and Io' The I ' term of IQ is found
by (2.9, The first two terms of | " are found by the integration deseribed in
Scction 3.2, H

) R
Therefore. L
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Caleulation of the third term of 1, " requires the solution of a set of simultancous
linear equations, yielding the coefficients. A . Fquation (2.12) is evaluated at selec~
ted points on the rigid tank wall below the undisturbed free surface. The total number

of points selected. n. must be such that:

n7R
) max .o
o A
where R is the maximum radius of the rigid tank wall below the undisturbed frec

<

surface.

Restriction (1) is necessary to prevent the modified Bessel function in the equation
from exceeding uhoutll)m. making othet terms of the equations completely insignifi-
‘ant. Restriction (2) is set by progrant core storage limitations. In general, points
selected by the program will be end points of segments with equally spaced points be-
tween. point 3. and point C (if € 4 0) on Figure 2-2. The resultant set of simultane-
ous lincar equations is solved by the routine SOLVE. Integration, again as in
Seetion 3.2, is then done on (2.46) with the coefficients., ;\n
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3.2 INTEGRATION. Integration is performed using Gauss’s Quadrature Formula:

kA

b 1/2

f f(u) du = (b-a) f 7 () dt - [w’l .t i% SR A

a -1/2

LS o7t ,’Jgu o (3.4)
n 1

3

where n is taken to be 16 and u = (b-aj vt - a7 (1 u).

The sum in (3.4) is taken by adding the smallest term to the next largest and so on,

to obtain the most accuracy when f(u) is increasing from a to b,

Two integration routines were written:

1. INTG1 - - for line integrals of the form
B
f f(2) de
A

The line integral is taken in a counterclockwise direction alony each segment of

the rigid tank wall from A to B, (See Figure 2-1.)

B 9 28 Zﬂ
/ f(z) dz f f(z)dz / fzydz- . . .~ / f (z)dz (3.9)
A 1 z2 7->'r1-1
where

2y, 22, . . ., Zp_3 4re the z-coordinate of end points of segments entered
as input: and zp is the z-coordinate at the outer radius of the undisturbed

free surface.

2. INTG?2 -- for line integrals of the form
¥ f(ry dr
¢

The tine integral is taken in o counterclockwise direction around the fluid of the

cros= section of the tank as in Figure 2-1.

3-3
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B C

f f (r)ydr f f (rydr */ f (r)dr (3.6)

C A B

With r-coordinate limits of integration for each segment of the rigid tank wall
from A to B and the undisturbed free surface, (3.6) is rewritten

2 '3 a

ff(r)dr: /f(r)dr*/f(r)drf..."ff(r)df

C r1 ro rn-1

-

- /f(r) dr 3.7)

where

ry, r2, r3, . . . , Ip-1 are the r-coordinate of end points ol segments
entered as input; a is the outer radius: and Ry is the inner radius of the
undisturbed free surtace.

Equation (3.4) is then applied to each term of (3.5) and (3. 7).
3.3 BESSEL FUNCTIONS. Two types of Bessel Functions are computed: the first

kind of order one (J3 (x) ) and its derivative (J]'_ (x) ), and the modified of order one
(I1{x) ) and its derivative (Ii (x)).

The BESSEL routine computes, in double precision, Jy(x) and J{(x) by the ascending

series:
K X 2k+1
A
-\ - (3.8)
Sy kD (ke 1)
k=1
ko x\2k k;x 2k
o <—1) (7) ‘_~1 \Lf—)-) )
) L - N = (3.9
Y Z (k1) s 2k (ke1) !
k:::] k—'l
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Each term of the above series is found by multiplying the previous term by the appro-
priate factor:

X2
en 2 :
——  for J_ (x) and the sccond part of J ~ (x) (3.10)
(k) (k- 1) ! :
x)2
(-1)( 2 ) ,
5 for the first part of Jl (x) @.11)
12

Since ¢ x = 14.863588 in the program, the above technique is sufficiently accurate
for the range of x.

PR . . . . ’ .
Routine 7V DBs computes . in double precision, the ll (x) and Ii (x) by polymomiul
appro<mations. with t - x 3,75,

For -3.75 7 x

[
.

-1
(3]

: 2
I(x)= X 1/2+ 0.87890594 t

4 0
< 0.51498369 t - 0. 15084934 ¢ )

- R L 10
©0,02608733 t + 0,00301532 t

12
< 0,00032411 t (3.12)
I 1 (x)
[ (x) =1 (x)- (3.13)
O X
where
3}
I (x) = 1-3.51562291t
[¢]
4 3
©3.0899424 1 - 1.2067492t°
o 8 10
£0.2659732 t - 0.0360763 t
12
-0, 00455813 t (3.14)
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For 3.75 " x

"1/ 2 X . p . .. P . . —1
1) - x T Ten [0.39504228 - 0.03985024 t

9

-2 -3
- 0.00362018t  + 0.00163801 1

-4 )
- 0.01031555t + 0,02242967

o -6 o -
- 0.02595312 ¢ + 0.01787654 t

_8 . -
- 0.00420059 t (3. 13)
I 1
; 1 (x , .
I, x)=1 (x) -————L—-)- (3. 16)
i 0 X
where
-1/2 X i ] -1
I (x) =X e 0.39504225 - 0,01328592 ¢
8]
-2 -3 -
- (), 00225319 - 0.00157565 t - 0.00916201 ¢t
. -5 , . -6 . -7
- 0,02057706 ¢ S 0.02635537t 0 - 0.01647633 ¢
-4 .
=0, 00392377 ¢ (3.17)
d-6
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SECTION 4

UTILIZATION OF COMPUTER PROGRAM

4.1 DESCRIPTION OF PROGRAM INPUT, Threc sets of numerical data are re-
quired as input for a computer run. Sections 4,1,1 through 4.1, 3 describe this data,
which is subject to limitations that are outlined in Section 4. 1.4, All numbers are
entered on 8O-column input forms. BFach digit of a number or a decimal point (if
needed) occupies one column, Unless otherwise specified in the follow ing sections, a

number must be entered with a decimal point.  The decimal point may be anywhere
within the columns allocated for that number on the input form.

A number that must not have a decimal point must be right-adiusted. That is, all
digits must occupy the right-most columns of those allocated for the number: there
may be no blank columns hetween the number and the last column, inclusive.

Extremely large or small numbers may be entered as a coefficient times ten to a
power:

! ;
T N
I !

T ;Q.J..I.“.JT.JI_..J‘T\M:L L
!

ffere a decimal point must be in the coefficient. and the last digit of the exponent must
occupy the last column of those allocated for the number.,

All coordinates required as input must be from a system in which the r-coordinate of
the centertine is zero, and the z-coordinute increases upward.,

‘|
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4.1.1 Problem Input. The first line of the input form contains that set of data re-
quired to set up the problem for the computer,

Columns Data

1 through 10 Enter the number of segments that describe the rigid tank
wall. The number must be right-adjusted. without a dec~
imal point,

11 through 20 Enter the number of modes of oscillation desired. The
number must be right-adjusted, without a decimal point.

21 through 30 Enter the liquid density (in pounds per cubic foot),
31 through 40 fnter the r-coordinate (in inches) of the beginning of the

segments that describe the tank.

&

41 through 50 Enter the z-coordinate {(in inches) of the beginning of the
segments that describe the tank.

4.1.2 Tank Geometry Input. Beginning with the second line of the input form, a line
of the data below is required for each segment that describes the rigid tank wall, Seg-
ments must be ordered in a continuous, counterclockwise path around the tank. The
number of these lines of input must equal the number entered in columns 1 through 10
of the first line (i.e. number of segments).

_C()lumns Data
1 through 10 Enter the r-coordinate (in inches) of the end of the partic-

ular segment, having proceeded along it in a counterclock-
wise direction around the tank.

11 through 20 Enter the z-coordinate (in inches) of the end of the particu-
lar segment, having proceeded along it in a counterclock-
wise direction around the tank.

21 through 30 Leave blank for a straight line segment: otherwise, enter
as follows, depending on the type of segment:

Elliptical. Enter the r-coordinate (in inches) of the center

of the ollipse.

Circular. Enter the r-coordinate (in inches) of the center
of the circle,



Columns

21 through 30
{(Contd)

31 through 40

41 through 50

51 through 60

61 through 70

GD |A-DDE64-062

Data

Parabolic. Enter the r-coordinate (in inches) of the vertex
of the parabola.

Leave blank for a straight line segment; otherwise, enter
as follows, depending on the tvpe of segment:

Elliptical. Enter the z-coordinate (in inches) of the center
of the ellipse.

Circular. FEnter the z-coordinate (in inches) of the center
of the circle.

Parabolic. Enter the z-coordinate (in inches) of the vertex
of the parabola.

Leave blank for o stradght Hine segment: otherwise
enter . depending on the type of the segment. as fol-

low s

Elliptical. Enter the semimajor axis (in inches) of the
ellipse.

Circular. Enter the radius (in inches) of the circle.
Parabolic. Enter the directrix (in inches) of the parabola.

Leave hlank for o parabolic or straight Hne segment:
otherwise enter. depending on the type of the segment.,

as follows:

Elliptical. Enter the semiminor axis (in inches) of the
ellipse.

Circular. Enter the radius (in inches) of the circle.

Leave blank for a circular or straight line segment; enter
the amount of counterclockwise rotation from the norm
(see below) of the c¢llipse if the segment is eliptical, or of
the parabola if the segment is parabolic. Tt may be left
blank for an angle of zero degrees.
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Normal Position of an Ellipse

z
SEMIMINOR AXIS
CENTER SEMIMAJOR AXIS
v

Normal Position of a Parabola

7
f
M VERTEXN

.

1.1.3 Case Input. Each case to be run requires a line of input as listed below. Any

number of cases may be run.

Columns Data
1 through 10 Enter the z-coordinate (in inches) of the liquid level in the tank.

4.1.4 Limitations on Input. The following restrictions must be applied to the input

data.
1. There can be no more than H0 segments,

2. Fach segment must be such that for a given radius, there is only a single

value of the height.
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i.e. A toroid must be described by four segments of the same circle:

r

3. The liquid level must not indicate a completely full tank.
4. There can be no more than ten modes of oscillation.

Do not enter the centerline segment unless it s, in reality. a part of the

i

rigid tank wall.

4.2 DESCRIPTION OF PROGRAM OUTPUT.  Printed output on a computer run con-

.-

sists of the following:

1. Tank Geometry. A complete definition of all segments entered as input.

And for each liquid level case:

2. Liquid Level, The z-coordinate (in inches) of the undisturbed free surface

in the tank.
2. Mass of Liquid. The mass (in pounds) of the liquid contained in the tank,

t.  Center of Gravity. The z-coordinate (in inches) of the center of gravity of
the liquid.
B

5. llll and its four terms (in th=in. ).

6. Eigenvalue Statistics. These. for cach mode requested. are the eigenvalue

and the eigenvector and its normalizing factor.

7. Foreach made requested. the coefficients (K .y h andh ) of the
n

force and moment equations.,
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8. For each mode requested, the following parameters for the spring-mass
analogy:

m_ (in pounds)
n

£ (in inches)
n

K *.«_ (in Ib7in,
n 3 ( )
9. Also. the following spring-mass parameters:
m (in pounds)
O

ﬁl (in inches)
)

»
I (in lb-in.")
0

These parameters are a summation for all modes of oscillation entered as
input data. and printed out in item 8 above. Therefore. if a one-mode
analysis is to be used, only one mode should be entered as input data.

4.3 SETUP FOR A COMPUTER RUN. A run on the computer requires a card deck
containing system control cards. the program binary deck, and input data cards.
The input data is punched on cards from the 80-column coding form described in

Section 4. 1. Arrangement of the deck will be as shown in Figure +4-1,
The program is designed to be run under the IBSYS monitor system. For the IBM

7094 computer. execution time estimates should be based on about 10 millihours per
segment per liquid level case.

4-6
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SECTION 5
CHECK-OUT OF THE DIGITAL PROGRAM

The output of the computer program was checked against the experimental and (if
possible) theoretical data available for tanks comprised of spheres, toroids, oblate
spheroids, right circular cylinders, and concentric right circular cylinders.

The volume and center of gravity of the fluid as well as the first two integrals in

(2.9) may be easily checked out by hand-calculation for any tank configuration. The
nondimensional frequencies, K,» may be checked for any tank configuration that has
analytical or experimental results available. The operations involved in finding

these five quantities constitute the major portion of the program, The rest of the
program simply manipulates these terms. Thus if these five quantities are calculated
properly and the multiplications and additions required for the evaluation of the rest
o_f the terms are checked out for a particular case, one is assured that the entire pro~-
gram is working properly. The only term which must be checked out in a different
manner is the third term of (2.9). The boundary value problem for ¥ ; (see Reference
1, Equations 3,10 and 3.11) may be solved explicitly for specialized cases only. The
shapes checked out here were for a right circular cylinder at various liquid levels.
FFor a cvlmder of radius 60 inches and liquid level 50 inches the calculated value was
1.36 X 108 . the computer obtained 1.3779 * 10 For a liquid level of 240 inches,
note the comparison of I, on page 5-6. Since l/,)l is approximated using Bessel func-
tions. the routine is not very accurate for elliptical or spherical tanks. However

if the tank is "close to cylindrical"” in shape. the output is good. That is, for the

two Atlas tanks the routine calculates Iy properly. A rough check on this term for
any tank shavoe is to compare the four term< comprising I11 . If the third term is

of different magnitude than the other three. it is not usable. The approximation

then used is that I11 " equals the sum of the first and fourth terms,

The routines for a parabolic section were checked by using a cylindrical tank of
radius 60 inches with a parabolic bottom. The parabola had a directrix of 5000 and
thus approximated a straight line. The difference between the output for this shane
and the output for a cylinder with a flat bottom were different only in the third signi-
ficant digit.
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ANALYTICAL RESULTS

120,

3.682
10.663
17.073

_ 4

3.729 X 10

-4
9.0965 x 10
ca « 14t
13.259 X 10
174.91

6
0.30837 x 10

3
9.4628 X 10
- 6
2.4059 X 10
112.96
6
2,7143 % 10

0.14973 - 10

COMPUTER OUTPUT

120.
3.
10.

17.

6823
663

073

. 5969
L71901
. 0486
.0

6
.30841 x 10

3
L4639 * 10
6
.4059 « 10

2.95

6

L7143 ¥ 10

, 11
. 15081 ¥ 10
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Figure 5-1, Theorctical und Experimental Values of Natural Fregqueney
Parameters for the Pirst Three Modes
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Figure 5-2, Variation of FFrequency Parameter bn wn :—j— )

with Fullness Ratio for Liguid in Spheroids:
Transverse Orientation; b/a 0,50
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APPENDIX
SAMPLE CASE
FOR
ATLAS TANK
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